billysch
06-12-2008, 11:21 PM
i know many people know that already , but not all of new honda owner, so thats why i try to post this
here is a video about how vtec work
http://hk.youtube.com/watch?v=q24D0xv49d4
DOHC
Honda's VTEC system is a simple method of endowing the engine with multiple camshaft profiles optimized for low and high RPM operations. Instead of one cam lobe actuating each valve, there are two: one optimized for low-RPM stability & fuel efficiency; the other designed to maximize high-RPM power output. Switching between the two cam lobes is controlled by the ECU which takes account of engine oil pressure, engine temperature, vehicle speed, engine speed and throttle position. Using these inputs, the ECU is programmed to switch from the low lift to the high lift cam lobes when the conditions mean that engine output will be improved. At the switch point a solenoid is actuated which allows oil pressure from a spool valve to operate a locking pin which binds the high RPM cam follower to the low rpm ones. From this point on, the poppet valve opens and closes according to the high-lift profile, which opens the valve further and for a longer time. The switch-over point is variable, between a minimum and maximum point, and is determined by engine load; the switch back from high to low rpm cams is set to occur at a lower engine speed than the up-switch, to avoid surging if the engine is asked to operate continuously at or around the switch-over point. The DOHC (Dual Over Head Cam) VTEC system has high and low lift cam lobe profiles on both the intake and exhaust valve camshafts.
The VTEC system was originally introduced as a DOHC system in the 1989 Honda Integra and Civic CRX SiR models sold in Japan and Europe, which used a 160 bhp (119 kW) variant of the B16A engine. The US market saw the first VTEC system with the introduction of the 1990 Acura NSX, which used a DOHC VTEC V6 with 270 hp. DOHC VTEC engines soon appeared in other vehicles, such as the 1992 Acura Integra GS-R (B17A 1.7 liter engine). And later in the 1993 Honda Prelude VTEC (H22 2.2 liter engine) and Honda Del Sol VTEC (B16 1.6 liter engine).
Honda has also continued to develop other varieties and today offers several varieties of VTEC: iVTEC, iVTEC Hybrid and VTEC in the NSX and some Japanese domestic market cars.
Sohc
As popularity and marketing value of the VTEC system grew, Honda applied the system to SOHC (Single Over Head Cam) engines, which shares a common camshaft for both intake and exhaust valves. The trade-off was that Honda's SOHC engines only benefitted from the VTEC mechanism on the intake valves. This is because VTEC requires a third center rocker arm and cam lobe (for each intake and exhaust side), and in the SOHC engine, the spark plugs are situated between the two exhaust rocker arms, leaving no room for the VTEC rocker arm. Additionally, the center lobe on the camshaft can only be utilized by either the intake or the exhaust, limiting the VTEC feature to one side.
However, beginning with the J37A4 3.7L SOHC V6 engine introduced on all 2009 Acura TL SH-AWD models, SOHC VTEC was incorporated for use with intake and exhaust valves. The intake and exhaust rocker shafts contain primary and secondary intake and exhaust rocker arms, respectively. The primary rocker arm contains the VTEC switching piston, while the secondary rocker arm contains the return spring. The term "primary" does not refer to which rocker arm forces the valve down during low-RPM engine operation. Rather, it refers to the rocker arm which contains the VTEC switching piston and receives oil from the rocker shaft.
The primary exhaust rocker arm contacts a low-profile camshaft lobe during low-RPM engine operation. Once VTEC engagement occurs, the oil pressure flowing from the exhaust rocker shaft into the primary exhaust rocker arm forces the VTEC switching piston into the secondary exhaust rocker arm, thus locking both exhaust rocker arms together. The high-profile camshaft lobe which normally contacts the secondary exhaust rocker arm alone during low-RPM engine operation is able to move both exhaust rocker arms together which are locked as a unit.
The secondary intake rocker arm contacts a low-profile camshaft lobe during low-RPM engine operation. Once VTEC engagement occurs, the oil pressure flowing from the intake rocker shaft into the primary intake rocker arm forces the VTEC switching piston into the secondary exhaust rocker arm, thus locking both intake rocker arms together. The high-profile camshaft lobe which normally contacts the primary intake rocker alone during low-RPM engine operation is able to move both intake rocker arms together which are locked as a unit.
The problem which plagued previous SOHC VTEC systems from incorporating VTEC for both the intake and exhaust valves has been resolved on the J37A4 by a novel design of the intake rocker arm. Each exhaust valve on the J37A4 corresponds to one primary and one secondary exhaust rocker arm. Therefore, there are a total of twelve primary exhaust rocker arms and twelve secondary exhaust rocker arms.
However, each secondary intake rocker arm is shaped similar to a "Y" which allows it to contact two intake valves at once. One primary intake rocker arm corresponds to each secondary intake rocker arm. As a result of this design, there are only six primary intake rocker arms and six secondary intake rocker arms.
here is a video about how vtec work
http://hk.youtube.com/watch?v=q24D0xv49d4
DOHC
Honda's VTEC system is a simple method of endowing the engine with multiple camshaft profiles optimized for low and high RPM operations. Instead of one cam lobe actuating each valve, there are two: one optimized for low-RPM stability & fuel efficiency; the other designed to maximize high-RPM power output. Switching between the two cam lobes is controlled by the ECU which takes account of engine oil pressure, engine temperature, vehicle speed, engine speed and throttle position. Using these inputs, the ECU is programmed to switch from the low lift to the high lift cam lobes when the conditions mean that engine output will be improved. At the switch point a solenoid is actuated which allows oil pressure from a spool valve to operate a locking pin which binds the high RPM cam follower to the low rpm ones. From this point on, the poppet valve opens and closes according to the high-lift profile, which opens the valve further and for a longer time. The switch-over point is variable, between a minimum and maximum point, and is determined by engine load; the switch back from high to low rpm cams is set to occur at a lower engine speed than the up-switch, to avoid surging if the engine is asked to operate continuously at or around the switch-over point. The DOHC (Dual Over Head Cam) VTEC system has high and low lift cam lobe profiles on both the intake and exhaust valve camshafts.
The VTEC system was originally introduced as a DOHC system in the 1989 Honda Integra and Civic CRX SiR models sold in Japan and Europe, which used a 160 bhp (119 kW) variant of the B16A engine. The US market saw the first VTEC system with the introduction of the 1990 Acura NSX, which used a DOHC VTEC V6 with 270 hp. DOHC VTEC engines soon appeared in other vehicles, such as the 1992 Acura Integra GS-R (B17A 1.7 liter engine). And later in the 1993 Honda Prelude VTEC (H22 2.2 liter engine) and Honda Del Sol VTEC (B16 1.6 liter engine).
Honda has also continued to develop other varieties and today offers several varieties of VTEC: iVTEC, iVTEC Hybrid and VTEC in the NSX and some Japanese domestic market cars.
Sohc
As popularity and marketing value of the VTEC system grew, Honda applied the system to SOHC (Single Over Head Cam) engines, which shares a common camshaft for both intake and exhaust valves. The trade-off was that Honda's SOHC engines only benefitted from the VTEC mechanism on the intake valves. This is because VTEC requires a third center rocker arm and cam lobe (for each intake and exhaust side), and in the SOHC engine, the spark plugs are situated between the two exhaust rocker arms, leaving no room for the VTEC rocker arm. Additionally, the center lobe on the camshaft can only be utilized by either the intake or the exhaust, limiting the VTEC feature to one side.
However, beginning with the J37A4 3.7L SOHC V6 engine introduced on all 2009 Acura TL SH-AWD models, SOHC VTEC was incorporated for use with intake and exhaust valves. The intake and exhaust rocker shafts contain primary and secondary intake and exhaust rocker arms, respectively. The primary rocker arm contains the VTEC switching piston, while the secondary rocker arm contains the return spring. The term "primary" does not refer to which rocker arm forces the valve down during low-RPM engine operation. Rather, it refers to the rocker arm which contains the VTEC switching piston and receives oil from the rocker shaft.
The primary exhaust rocker arm contacts a low-profile camshaft lobe during low-RPM engine operation. Once VTEC engagement occurs, the oil pressure flowing from the exhaust rocker shaft into the primary exhaust rocker arm forces the VTEC switching piston into the secondary exhaust rocker arm, thus locking both exhaust rocker arms together. The high-profile camshaft lobe which normally contacts the secondary exhaust rocker arm alone during low-RPM engine operation is able to move both exhaust rocker arms together which are locked as a unit.
The secondary intake rocker arm contacts a low-profile camshaft lobe during low-RPM engine operation. Once VTEC engagement occurs, the oil pressure flowing from the intake rocker shaft into the primary intake rocker arm forces the VTEC switching piston into the secondary exhaust rocker arm, thus locking both intake rocker arms together. The high-profile camshaft lobe which normally contacts the primary intake rocker alone during low-RPM engine operation is able to move both intake rocker arms together which are locked as a unit.
The problem which plagued previous SOHC VTEC systems from incorporating VTEC for both the intake and exhaust valves has been resolved on the J37A4 by a novel design of the intake rocker arm. Each exhaust valve on the J37A4 corresponds to one primary and one secondary exhaust rocker arm. Therefore, there are a total of twelve primary exhaust rocker arms and twelve secondary exhaust rocker arms.
However, each secondary intake rocker arm is shaped similar to a "Y" which allows it to contact two intake valves at once. One primary intake rocker arm corresponds to each secondary intake rocker arm. As a result of this design, there are only six primary intake rocker arms and six secondary intake rocker arms.